ケーブルの被覆材の解析

<概要> キーワード:成分特定、定性・定量分析、GC/MS、ICP-MS、充填剤、可塑剤、滑剤 基板上の部品に接続されているケーブルは、下図の通り導電線の他に様々な材料から構成されています。 特に被覆材は有機物・無機物共に多岐にわたる物質が含まれています。 今回は橙色の外部被覆材についてGC/MS、Py-GC/MS、ICP-MSによる定性・定量分析を行いました。 その結果、外部被覆材の材料組成が判明しました。

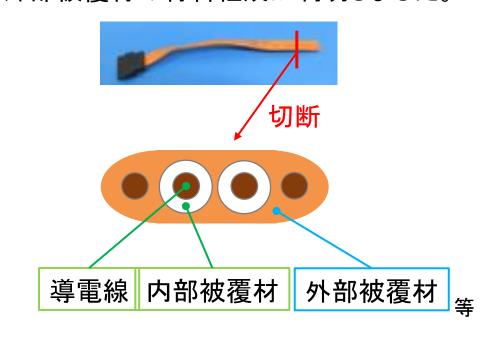


図1 電線断面構造のイメージ図

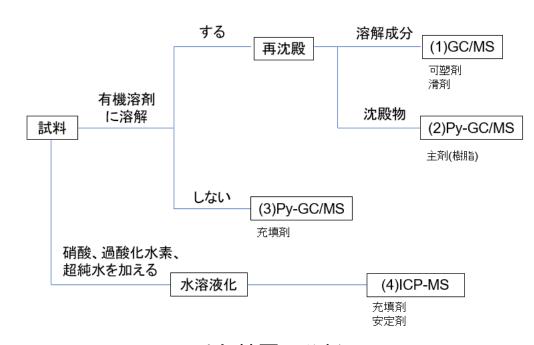


図2 外部被覆の分析フロー

ケーブルの被覆材の解析

外部被覆材の解析結果

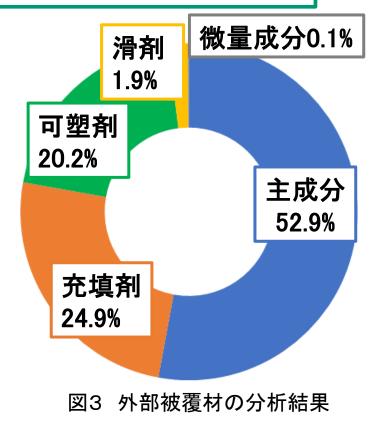
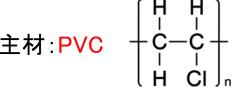
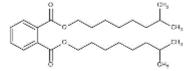


表1 含有成分の詳細


組成	成分名	配合[%]	性質
主成分	PVC	52.9	柔軟性、耐久性など
充填剤	炭酸カルシウム タルク	24.9	電気的·機械的性質向上 (一般配合量 最大50%)
可塑剤	フタル酸ジイソノニル	20.2	柔軟性付与·機械的性質向上 (一般配合量 10-60%)
滑剤	ハ°ルミチン酸メチル	1.9	表面仕上げ、印字性向上等
微量成分	Ba, Zn,Tiなど	0.1	不純物、その他

Ō


定性→定量のステップを踏むことで 未知試料の組成分析が可能


補足1:Py-GC/MS、GC/MSによる外部被覆の分析

樹脂中の添加剤成分を 抽出することで添加剤の 定性・定量が可能

図4 外部被覆のPy-GC/MSクロマトグラム

図5 可塑剤のGC/MSクロマトグラム

外部被覆に用いられる樹脂成分や可塑剤の分析には、Py-GC/MSやGC/MSが有効!

補足2:ICP-MSによる金属元素分析

STEP1:全測定可能元素の簡易分析(定性分析) STEP2:検量線法による定量分析

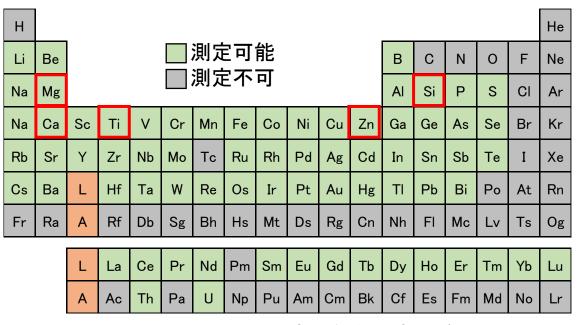
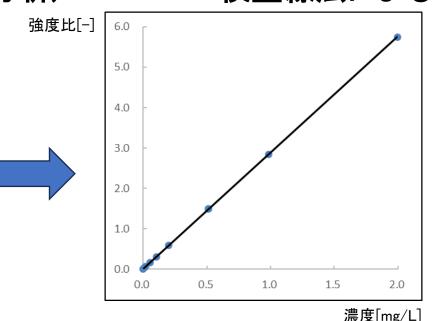



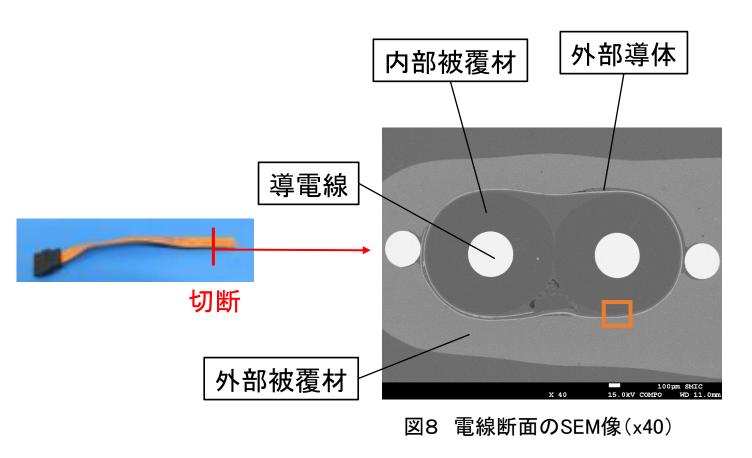
図6 ICP-MSで測定可能な元素一覧

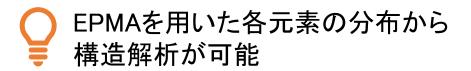
定性分析の結果、外部被覆材から Mg,Si,Ca,Ti,Znが検出された。

<u> </u>	\sim	松旦始	

表2 定量分析結果 含有量 Mg 0.90 0.090 9.1 Ca 0.027 Τi Zn 0.050

Ca筷量線


・濃度既知の標準液を使用して検量線を作成し Mg,Si,Ca,Ti,Znの定量分析を行った。



ICP-MSは0.1%未満の微量元素でも分析が可能

単位[%]

補足3:EPMAを用いた元素マッピング

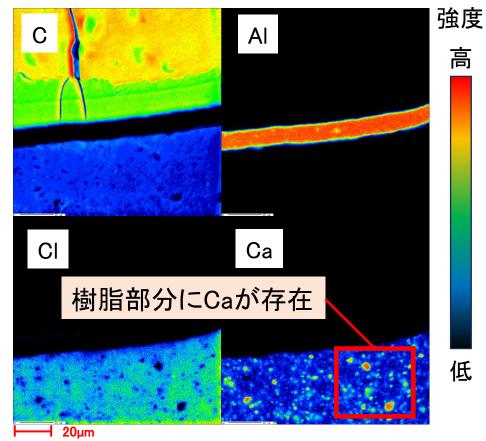


図9 外部導体付近(SEM像のオレンジ枠箇所)の 元素マッピング